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Solving Algebraic Equations
by Completing Powers

Hua-Lin Huang, Shengyuan Ruan, Xiaodan Xu, and Yu Ye

Abstract. We derive the Cardano formula of cubic equations by completing the cube, and
provide radical solutions to some algebraic equations of degree greater than 3 by completing
powers. The main idea of completing the cube and higher powers arises from David Harrison’s
center theory of higher degree forms. Elementary criteria and solving algorithms for such
algebraic equations are presented, and the computation amounts to solving linear equations
and quadratic equations.

1. INTRODUCTION. Solving algebraic equations is a key problem throughout the
whole history of mathematics. The radical solution to a quadratic equation was found
by the Babylonians 1500 BC [1]. Three thousands years later, cubic and quartic equa-
tions were solved in terms of radicals by Italian mathematicians. After the works of
Paolo Ruffini, Niels Henrik Abel and Evariste Galois, it is common knowledge that a
general algebraic equation of degree at least 5 has no radical solution. See [1] for more
about the history. Theoretically, an equation is solvable by radicals if and only if its
Galois group is solvable. In practice, however, it is very hard to determine whether an
equation is solvable by radicals.

This article is motivated by the frequently asked question: can one solve cubic equa-
tions by completing the cube? There have been many attempts in the literature. For
example, Joseph Kung and Gian-Carlo Rota found in [2] radical solutions to cubic
equations by the classical invariant theory of binary forms, where the completion of
cubes is by virtue of canonical forms of binary cubics. Recently, in [3] Nolan Wallach
found a linear fractional transformation that completes the cube for a cubic by geo-
metric invariant theory. The aforementioned works involve complicated computations.
The key approach of the present article is an elementary method of completing pow-
ers for higher degree forms based on Harrison’s theory of centers [4–7]. This can be
applied to find radical solutions of some algebraic equations.

Let f (x) = a0x
d + (

d

1

)
a1x

d−1 + · · · + (
d

d−1

)
ad−1x + ad be a complex polynomial

of degree d > 2 and let F(x, y) = a0x
d + (

d

1

)
a1x

d−1y + · · · + ady
d be its homoge-

nization. Let H be the Hessian matrix of F(x, y) (defined in Section 2). The cen-
ter Z(F) := {X ∈ C2×2 | (HX)T = HX} is a subalgebra of the full matrix algebra
C2×2. We will prove in Proposition 2 that Z(F) ∼= C×C if and only if F(x, y) =
(α1x + β1y)d + (α2x + β2y)d , and if and only if f (x) = (α1x + β1)

d + (α2x + β2)
d,

for some αi and βj with α1β2 − α2β1 �= 0. If this is the case, then f (x) = 0 is solvable
by radicals and the roots are easily obtained. Moreover, the completion of powers is
fully indicated by the center and the computation is elementary involving only solving
simple linear and quadratic equations.

The article is organized as follows. In Section 2 we recall Harrison’s theory of
centers and its application to completing powers of polynomials. Then we apply the
center theory to derive the Cardano formula of cubic equations in Section 3, and to
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solve some higher degree algebraic equations by completing powers in Section 4. Sec-
tion 5 is a short summary, in which we include an approach to solve quartic equations
by generalized completing powers.

2. HARRISON CENTERS AND COMPLETING POWERS. Throughout the pa-
per, let d > 2 be an integer and k be a field of characteristic 0 or > d. As preparation,
we recall the notion of center algebras of homogeneous polynomials and their appli-
cation to a criterion and an algorithm of completing powers.

Let f (x1, x2, . . . , xn) ∈ k[x1, . . . , xn] be a homogeneous polynomial of degree d.

The center of f = f (x1, x2, . . . , xn) was introduced by Harrison [4] as follows:

Z(f ) := {X ∈ kn×n | (HX)T = HX},
where

H = Hf,x =
(

∂2f

∂xi∂xj

)
1≤i, j≤n

=
(

∂

∂x1
, · · · ,

∂

∂xn

)T (
∂

∂x1
, · · · ,

∂

∂xn

)
· f

is the Hessian matrix.

Example 1. For d > 2, consider the sum of powers f = xd
1 + xd

2 + · · · + xd
n . Then the

Hessian matrix H of f is diagonal with (i, i)-entry d(d − 1)xd−2
i . Thus the (i, j)-entry

of HX reads d(d − 1)xd−2
i cij for X = (cij ). The symmetric condition on HX implies

easily that Z(f ) is the set of diagonal matrices. Thus Z(f ) forms a commutative
algebra which is isomorphic to kn. Notice that the case d = 2 is totally different here.
For f = x2

1 + x2
2 + · · · + x2

n , the Hessian is two times the identity matrix In, and in
this case, Z(f ) = {X ∈ kn×n | XT = X}.

For simplicity we use x = (x1, x2, . . . , xn)
T to denote the column vector of vari-

ables. Let x = P y be an invertible linear change of variables x, where P is some
invertible square matrix and y = (y1, y2, . . . , yn)

T . Then g(y) = f (P y) = f (x) is a
homogeneous polynomial of degree d in variables y1, y2, . . . , yn. Clearly, by the chain
rule of derivative we have

(
∂g

∂y1
,

∂g

∂y2
, . . . ,

∂g

∂yn

) = (
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

)P, (1)

where each ∂f

∂xi
is viewed as a polynomial in y via x = P y. Hence Hg,y = P T Hf,xP ,

again the ∂2f

∂xi∂xj
’s can be viewed as polynomials in y in the usual way. Then for any

Y ∈ kn×n,

(Hg,yY )T = Hg,yY ⇐⇒Y T P T Hf,xP = P T Hf,xPY

⇐⇒(PYP −1)T Hf,x = Hf,xPYP −1,

and it follows that Z(f ) = PZ(g)P −1.
A homogeneous polynomial is called nondegenerate if no variable can be removed

by any invertible linear change of its variables. Explicitly, f (x) ∈ k[x1, x2, . . . , xn] is
nondegenerate if g(y) = f (P y) /∈ k[y1, y2, . . . , yn−1] for any invertible matrix P and
linear change of variables x = P y. Obviously g(y) ∈ k[y1, y2, . . . , yn−1] if and only
if ∂g

∂yn
= 0, and it follows by (1) that f is nondegenerate if and only if its first-order

differentials ∂f

∂xi
are linearly independent. Moreover, for any homogeneous polyno-

mial f (x), there exists some invertible linear change of variables x = P y, such that
g(y) = f (P y) = h(y1, y2, . . . , yr) for some nondegenerate polynomial h in variables
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y1, y2, . . . , yr with r ≤ n, and if r < n then we may view g as the sum of h and a zero
polynomial in variables yr+1, . . . , yn. We say that f (x1, x2, . . . , xn) is diagonalizable
over k if there exists an invertible k-linear change of variables x = P y such that

g(y) = f (P y) = λ1y
d
1 + λ2y

d
2 + · · · + λry

d
r ,

where λi ∈ k×. Note that r is necessarily less than or equal to n here.
The center turns out to be a very effective invariant for deciding whether a ho-

mogeneous polynomial is diagonalizable. The following proposition was essentially
obtained in [4], see also [5–7].

Proposition 2. Let f ∈ k[x1, x2, . . . , xn] be a homogeneous polynomial of degree
d > 2. Then

(1) Z(f ) is a subalgebra of kn×n, and Z(f ) is commutative if and only if f is nonde-
generate.

(2) f is nondegenerate and diagonalizable over k if and only if Z(f ) ∼= kn as
algebras.

Proof. For the convenience of the reader, we include a proof. In the following, we will
use the fact that a polynomial h(x) with ∂h

∂xi
= 0 for all i must be a constant.

By definition, A = (aij )1≤i,j≤n ∈ Z(f ) if and only if

n∑
u=1

auj

∂

∂xi

∂

∂xu

· f =
n∑

u=1

aui

∂

∂xj

∂

∂xu

· f (2)

for any 1 ≤ i, j ≤ n. For brevity we write ∂i = ∂

∂xi
.

(1) First we will show that Z(f ) is an algebra, and it suffices to show that AB ∈
Z(f ) for any A = (aij )1≤i,j≤n, B = (bij )1≤i,j≤n ∈ Z(f ).

For any 1 ≤ i, j, k ≤ n, direct calculation with multiple applications of (2) shows
that

∂k(
∑
u,v

avubui∂v∂j · f ) =
∑

u

bui∂j

∑
v

avu∂v∂k · f =
∑

u

bui∂j

∑
v

avk∂v∂u · f

=
∑

v

avk∂v

∑
u

bui∂u∂j · f =
∑

v

avk∂v

∑
u

buj ∂u∂i · f

=
∑

u

buj∂i

∑
v

avk∂v∂u · f =
∑

u

buj∂i

∑
v

avu∂v∂k · f

=∂k(
∑
u,v

avubuj ∂v∂i · f ).

Let AB = (cij )1≤i,j≤n. Then cij = ∑
u aiubuj and the above equalities read as

∂k(
∑

v

cvi∂v∂j · f ) = ∂k(
∑

v

cvj ∂v∂i · f ), 1 ≤ i, j, k ≤ n.

By the assumption d > 2, the difference
∑

v cvi∂v∂j · f − ∑
v cvj ∂v∂i · f cannot be

a constant other than 0. Therefore
∑

v cvi∂v∂j · f = ∑
v cvj ∂v∂i · f for any i, j , and

AB ∈ Z(f ) follows.
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Next assume that f is nondegenerate. We will show that AB = BA. By a similar
argument, for any 1 ≤ i, j, k ≤ n, we have

∂k∂j (
∑
u,v

avubui∂v · f ) =
∑

u

bui∂j

∑
v

avu∂v∂k · f =
∑

u

bui∂j

∑
v

avk∂v∂u · f

=
∑

v

avk∂v

∑
u

bui∂u∂j · f =
∑

v

avk∂v

∑
u

buj ∂u∂i · f

=
∑

u

buj∂u

∑
v

avk∂v∂i · f =
∑

u

buj∂u

∑
v

avi∂v∂k · f

=
∑

v

avi∂k

∑
u

buj∂u∂v · f =
∑

v

avi∂k

∑
u

buv∂u∂j · f

=∂k∂j (
∑
u,v

buvavi∂u · f ) = ∂k∂j (
∑
u,v

bvuaui∂v · f ).

Let BA = (dij )1≤i,j≤n. Then the above equalities imply that

∑
v

cvi∂v · f =
∑

v

dvi∂v · f

for any i, again we use the assumption d > 2. Now since f is nondegenerate, cvi = dvi

for all v and i, that is AB = BA.
For the converse part, it suffices to show that Z(f ) is noncommutative if f is de-

generate. By an invertible linear change of variables, we may assume that ∂f

∂xn
= 0.

Then the Hessian matrix H has the form

(
H1 0
0 0

)
, where H1 is a square matrix of

order n − 1. It is easy to show that

{(
aIn−1 0

c d

)
| a, d ∈ k, c ∈ kn−1

}

is a noncommutative subalgebra of Z(f ).
(2) Suppose f is nondegenerate and diagonalizable. Then there is a change of

variable x = P y such that

g(y) := f (P y) = λ1y
d
1 + λ2y

d
2 + · · · + λny

d
n

for some λi ∈ k×. As in Example 1, it is easy to see that Z(g) consists of all diagonal
matrices. Then Z(f ) = PZ(g)P −1 is isomorphic to kn as algebras.

Conversely, suppose Z(f ) ∼= kn as algebras. Since Z(f ) is commutative, it follows
from (1) that f is nondegenerate. Moreover, in Z(f ) there exists a complete set of
orthogonal primitive idempotents, say nonzero elements e1, e2, . . . , en with 1 = e1 +
e2 + · · · + en, e2

i = ei for any i, and eiej = 0 for i �= j . Recall that a nonzero element
e is called an idempotent if e2 = e, and two idempotents e and f are orthogonal if
ef = f e = 0.

As the polynomial x2 − x has no multiple roots, all the ei’s are diagonalizable under
conjugation. Since they mutually commute, there exists some invertible matrix Q ∈
kn×n such that Q−1eiQ is diagonal for all i, see for instance Theorem 7, Section 6.5
in [8].
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An easy exercise in linear algebra shows that if two diagonal matrices A, B are or-
thogonal, i.e., AB = BA = 0, then rank(A + B) = rank(A) + rank(B). By induction,

n∑
i=1

rank(Q−1eiQ) = rank(

n∑
i=1

Q−1eiQ) = rank(In) = n,

which forces rank(ei) = rank(Q−1eiQ) = 1 for all i. Moreover, e2
i = ei implies that

ei has eigenvalue 1 of multiplicity 1.
For each i, take an eigenvector Xi of ei for the eigenvalue 1, and set P =

(X1, X2, . . . , Xn) to be the matrix whose columns are the Xi’s. Then eiXi = Xi for
any i and eiXj = 0 for i �= j . It follows that X1, X2, . . . , Xn are linearly indepen-
dent, and hence P is invertible. Clearly P −1eiP = Eii , where Eii is the matrix with
(i, i)-entry 1 and 0 otherwise.

Now take the change of variables x = P y, and set g(y) = f (P y). Then Z(g) =
P −1Z(f )P contains Eii , 1 ≤ i ≤ n. Let G = (gij )1≤i,j≤n be the Hessian of g. Since
Eii ∈ Z(g), we have GEii = ET

iiG = EiiG. If i �= j , comparing the (i, j)-entry on
both sides gives 0 · gij = gij . Thus gij = 0 for i �= j , which means that G is a di-
agonal matrix. It follows easily that g(y) = λ1y

d
1 + λ2y

d
2 + · · · + λny

d
n , i.e., f (x) is

diagonalizable.

Remark 3. The proof of the previous proposition relies heavily on the assumption that
d > 2. In fact, as we have shown in Example 1, the center of f = x2

1 + x2
2 + · · · +

x2
n consists of all symmetric matrices, and hence is NOT closed under multiplication

unless n = 1.

Remark 4. The previous proposition provides a criterion for completing powers of
multivariate homogeneous polynomials. In addition, the proof also contains an algo-
rithm for the process of completing powers for diagonalizable polynomials, which is
summarized as follows:

1. Find the Hessian matrix H of a given homogeneous polynomial.

2. Solve the linear system of matrix equations (HX)T = HX to find the center
Z(f ).

3. Verify whether Z(f ) is isomorphic to kn as algebras, and find a complete set of
orthogonal idempotents e1, e2, . . . , en if it is the case.

4. For each ei find an eigenvector Xi for the eigenvalue 1.

5. Set P = (X1, X2, . . . , Xn), and take the change of variable x = P y. Then
g(y) = f (P y) is a diagonal form.

For the previous item 3, we mention that a commutative subalgebra Z ⊆ kn×n is
isomorphic to kn if and only if dim(Z) = n and there exists a basis of Z consist-
ing of diagonalizable matrices. Note that a square matrix A is diagonalizable if and
only if its minimal polynomial has no multiple roots. The minimal polynomial is ob-
tained as follows. First find the maximal d such that In, A, · · · , Ad−1 are linearly in-
dependent, and then find a0, · · · , ad−1 such that Ad = −ad−1A

d−1 − · · · − a0In. Then
p(x) = xd + ad−1x

d−1 + · · · + a0 is the minimal polynomial of A. Now p(x) has no
multiple roots if and only if p(x) is coprime to its derivative p′(x), or equivalently
(p(x), p′(x)) = 1, where (p(x), p′(x)) is the greatest common divisor which is cal-
culated using the famous Euclidean algorithm.

For a commutative subalgebra Z ⊆ kn×n, finding a complete set of orthogonal
idempotents needs a bit of work. In general we need to solve a certain system of
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quadratic equations. Assume that Z ∼= kn, and {e1, e2, . . . , en} is a complete set of
orthogonal idempotents, that is 1 = e1 + e2 + · · · + en, e2

i = ei for any i and eiej = 0
for i �= j . Then, as we have shown above, tr(ei) = rank(ei) = 1 for any i. Moreover,
any e ∈ Z with the property tr(e) = rank(e) = 1 is equal to some ei . Thus to find the
desired idempotents we need to find elements in Z whose trace and rank are both 1.

Among the steps of the previous algorithm, finding a complete set of orthogonal
idempotents is the most difficult one. This is equivalent to finding a set of matrices
with trace 1 and rank 1 which is computationally very expensive. The rank 1 condition
can be transformed to a system of quadratic equations. If the number of variables is
two, then there is only one quadratic equation which can be easily solved. However
if the number of variables is greater than two, then the system of quadratic equations
may become very complicated.

We conclude this section with an example to elucidate the algorithm of completing
powers.

Example 5. Consider the following ternary cubic

f (x1, x2, x3) = x3
1 + 3x2x

2
1 + 3x3x

2
1 + 3x2

2x1 + 3x2
3x1

+ 6x2x3x1 − x3
2 + 20x3

3 − 21x2x
2
3 + 15x2

2x3.

Then the Hessian H of f is⎛
⎝6x1 + 6x2 + 6x3 6x1 + 6x2 + 6x3 6x1 + 6x2 + 6x3

6x1 + 6x2 + 6x3 6x1 − 6x2 + 30x3 6x1 + 30x2 − 42x3

6x1 + 6x2 + 6x3 6x1 + 30x2 − 42x3 6x1 − 42x2 + 120x3

⎞
⎠

=6x1

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ + 6x2

⎛
⎝1 1 1

1 −1 5
1 5 −7

⎞
⎠ + 6x3

⎛
⎝1 1 1

1 5 −7
1 −7 20

⎞
⎠ .

Suppose X = (xij ) ∈ Z(f ). By comparing the coefficients of monomials appearing in
H , the condition (HX)T = HX can be translated into a system of linear equations in
xij , say ⎛

⎝1 1 1
1 1 1
1 1 1

⎞
⎠X = XT

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠

⎛
⎝1 1 1

1 −1 5
1 5 −7

⎞
⎠X = XT

⎛
⎝1 1 1

1 −1 5
1 5 −7

⎞
⎠

⎛
⎝1 1 1

1 5 −7
1 −7 20

⎞
⎠X = XT

⎛
⎝1 1 1

1 5 −7
1 −7 20

⎞
⎠ .

A general solution to the system of linear equations reads

X =
⎛
⎝a a − b a + 2b − 3c

0 b −2b + 2c

0 0 c

⎞
⎠ .
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By direct verification, we have⎛
⎝1 1 1

0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝0 −1 2

0 1 −2
0 0 0

⎞
⎠ ,

⎛
⎝0 0 −3

0 0 2
0 0 1

⎞
⎠

are the desired idempotents, and (1, 0, 0)T , (−1, 1, 0)T , (−3, 2, 1)T are their eigen-

vectors for the eigenvalue 1 respectively. Now set P =
(

1 −1 −3
0 1 2
0 0 1

)
and take a change

of variables x = P y. Then f (P y) has the form λ1y
3
1 + λ2y

3
2 + λ3y

3
3 , and by direct

computation we have

f (P y) = y3
1 − 2y3

2 + 3y3
3 .

Note that P −1 =
(

1 1 1
0 1 −2
0 0 1

)
, and y1 = x1 + x2 + x3, y2 = x2 − 2x3, y3 = x3, therefore

f (x1, x2, x3) = (x1 + x2 + x3)
3 − 2(x2 − 2x3)

3 + 3x3
3 .

3. CARDANO FORMULA REVISITED BY COMPLETING THE CUBE. In
this section, we derive the well-known Cardano formula of cubic equations by com-
pleting the cube. Let

a0x
3 + 3a1x

2 + 3a2x + a3 = 0 (3)

be a general cubic equation over the field C of complex numbers. Similar to the situ-
ation of quadratic equations but going a bit further, we aim to express cubic equations
as the sum of two cubes of linear binomials. That is, we try to find an identity as the
following

f (x) = a0x
3 + 3a1x

2 + 3a2x + a3 = (α1x + β1)
3 + (α2x + β2)

3. (4)

If such an identity is found, then the solution to (3) is easily obtained by taking the
cubic roots of both sides of (α1x + β1)

3 = −(α2x + β2)
3.

Thanks to the theory of centers, we have an effective criterion and algorithm of
completing the cubes for a cubic equation as (4). In order to apply Proposition 2, we
homogenize univariate cubic polynomials as binary cubics

F(x, y) = a0x
3 + 3a1x

2y + 3a2xy2 + a3y
3. (5)

We say that f (x) is nondegenerate if F(x, y) is nondegenerate. It is clear that

f (x) = (α1x + β1)
3 + (α2x + β2)

3 ⇔ F(x, y) = (α1x + β1y)3 + (α2x + β2y)3.

(6)
We start with computing the center of F(x, y). The Hessian of F(x, y) is given by

H =
(

6a0x + 6a1y 6a1x + 6a2y

6a1x + 6a2y 6a2x + 6a3y

)
= 6x

(
a0 a1

a1 a2

)
+ 6y

(
a1 a2

a2 a3

)
.

Note that F(x, y) is assumed to be nonzero throughout, hence so is the Hessian.
Suppose X = (cij ) ∈ C2×2 and X ∈ Z(F). Then by comparing the coefficients of x
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and y in the equality HX = XT H , we have(
a0 a1

a1 a2

)(
c11 c12

c21 c22

)
=

(
c11 c21

c12 c22

)(
a0 a1

a1 a2

)
,

(
a1 a2

a2 a3

) (
c11 c12

c21 c22

)
=

(
c11 c21

c12 c22

)(
a1 a2

a2 a3

)
.

Equivalently the cij ’s satisfy the following linear equations{
a0c12 + a1(c22 − c11) − a2c21 = 0,

a1c12 + a2(c22 − c11) − a3c21 = 0.
(7)

It follows that Z(F) has dimension 2 or 3, and dim Z(F) = 3 if and only if
(a0, a1, a2) and (a1, a2, a3) are linearly dependent. An interesting observation is that
the latter condition is equivalent to saying that F is degenerate. In fact, F(x, y) is
degenerate if and only if

∂F (x, y)

∂x
=3a0x

2 + 6a1xy + 3a2y
2,

∂F (x, y)

∂y
=3a1x

2 + 6a2xy + 3a3y
2

are linearly dependent, if and only if

rank

(
3a0 6a1 3a2

3a1 6a2 3a3

)
= 1,

if and only if

rank

(
a0 a1 a2

a1 a2 a3

)
= 1.

We have shown that if F is degenerate, then Z(F) is a 3-dimensional subalgebra of
C2×2, which is not commutative. If F is nondegenerate, then Z(F) is a 2-dimensional
commutative subalgebra of C2×2. Note that the commutativity or non-commutativity
of the center algebra Z(F) follows from Proposition 2.

It is well known that a 2-dimensional algebra Z over C is isomorphic either to
C2, or to C[ε]/(ε2). In fact, take α ∈ Z \C, then 1, α form a basis of Z. Hence
α2 + bα + c = 0 for some b, c ∈ C, and Z ∼= C[x]/(x2 + bx + c) as algebras. There
are two cases.

If b2 − 4c �= 0, then x2 + bx + c has distinct roots a1 and a2, then we have isomor-
phisms

Z ∼= C[x]/((x − a1)(x − a2)) ∼= C[x]/(x − a1) ×C[x]/(x − a2) ∼= C×C
of algebras, where the second isomorphism comes from the Chinese Remainder
Theorem and the fact x − a1 and x − a2 are coprime for a1 �= a2. In fact, e1 = α−a2

a1−a2

and e2 = α−a1
a2−a1

are orthogonal idempotents of Z, and Z = Ce1 ×Ce2
∼= C×C.
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If b2 − 4c = 0, then x2 + bx + c = (x − a)2 for some a, then Z ∼= C[x]/((x −
a)2) ∼= C[ε]/(ε2), the ring of dual numbers.

So far we have shown that for any nonzero binary cubic form F , exactly one
of the following situations occur: (I) dim Z(F) = 3; (II) Z(F) ∼= C2; (III) Z(F) ∼=
C[ε]/(ε2). We will deal with these three cases in Proposition 6, Proposition 8, and
Theorem 10 separately.

First we derive the following well-known facts.

Proposition 6. Let F(x, y) = a0x
3 + 3a1x

2y + 3a2xy2 + a3y
3. Then the following

statements are equivalent.

(1) dim(Z(F )) = 3.
(2) F(x, y) is degenerate.
(3) (a0, a1, a2) and (a1, a2, a3) are linearly dependent.
(4) F(x, y) is a perfect cube, i.e., F(x, y) = (αx + βy)3 for some α, β ∈ C. In this

case, (α, β) =
{

1
3
√

a2
0

(a0, a1), if a0 �= 0;
(0, 3

√
a3), if a0 = 0.

Consequently, let f (x) = a0x
3 + 3a1x

2 + 3a2x + a3 be a degenerate cubic polyno-
mial, then f (x) has a unique root − a1

a0
with multiplicity 3.

Proof. We are left to show that (4) is equivalent to (1)–(3). Assume F(x, y) =
(αx + βy)3. Then ∂F

∂x
= 3α(αx + βy)2 and ∂F

∂y
= 3β(αx + βy)2 are clearly linearly

dependent.
Conversely, assume (a0, a1, a2) and (a1, a2, a3) are linearly dependent. If a0 = 0,

then the assumption on the rank forces a1 = a2 = 0, and hence F(x, y) = a3y
3 =

( 3
√

a3y)3.
If a0 �= 0, then (a1, a2, a3) = a1

a0
(a0, a1, a2), hence

F(x, y) = a0(x
3 + 3

a1

a0
x2y + 3(

a1

a0
)2xy2 + (

a1

a0
)3y3 = a0(x + a1

a0
y)3.

That is, F(x, y) is a perfect cube in either case.
The last assertion follows easily from (4). Note that a0 �= 0 in this case because f

is a cubic.

In the previous proposition, it is shown that a degenerate binary cubic form can be
completed as one perfect cube. Next we turn to the nondegenerate case.

Let F(x, y) be a nondegenerate cubic form. Then the coefficient matrix of the linear
system (7) has rank 2. For brevity we denote its minors of order 2 by

D1 =
∣∣∣∣a0 a1

a1 a2

∣∣∣∣ , D2 =
∣∣∣∣a0 a2

a1 a3

∣∣∣∣ , D3 =
∣∣∣∣a1 a2

a2 a3

∣∣∣∣ .
Clearly, rank

(
a0 a1 a2
a1 a2 a3

) = 2 if and only if at least one of the Di’s is nonzero.
By direct calculation, a general element of Z(F), or equivalently a solution to (7)

reads (
c11 c12

c21 c22

)
= a

(
1 0
0 1

)
+ b

(
0 −D3

D1 D2

)
, ∀a, b ∈ C.

Let � denote the last matrix. Then the minimal polynomial of � is x2 − D2x +
D1D3. By the above discussion, we know that Z(F) is isomorphic to C2 if D2

2 −
4D1D3 �= 0, otherwise Z(F) is isomorphic toC[ε]/(ε2).
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Theorem 7. Let F(x, y) = a0x
3 + 3a1x

2y + 3a2xy2 + a3y
3. Then the following state-

ments are equivalent.

(1) Z(F) ∼= C2 as algebras.

(2) F(x, y) = (α1x + β1y)3 + (α2x + β2y)3 with α1β2 − α2β1 �= 0.

(3) D2
2 − 4D1D3 �= 0.

Consequently, a general complex binary cubic is the sum of cubes of two linearly
independent linear forms.

Proof. By Proposition 2, F(x, y) = (α1x + β1y)3 + (α2x + β2y)3 with α1β2 −
α2β1 �= 0 if and only if F is nondegenerate and diagonalizable, if and only if Z(F) ∼=
C2, if and only if D2

2 − 4D1D3 �= 0.
The preceding assertion implies that the set of binary cubics that are sums of cubes

of two different linear forms is a principal open set in the affine space of all binary
cubics. Since this set is obviously not empty, it is dense by the theory of elementary
algebraic geometry [9, Chapter 4]. In other words, a general binary cubic is the sum of
cubes of two different linear forms.

Now we complete the cube as a sum of two perfect cubes for a general binary cubic.
Keep the notation

� =
(

0 −D3

D1 D2

)
, (8)

where

D1 =
∣∣∣∣a0 a1

a1 a2

∣∣∣∣ , D2 =
∣∣∣∣a0 a2

a1 a3

∣∣∣∣ , D3 =
∣∣∣∣a1 a2

a2 a3

∣∣∣∣ .
Assume D2

2 − 4D1D3 �= 0. Then � has two distinct eigenvalues

λ1,2 = D2 ± √
D2

2 − 4D1D3

2
.

We stress that by
√

a we always mean a fixed square root of a, and the other one is
−√

a. Similarly, 3
√

a refers to a fixed cubic root of a, and all cubic roots of a are given
by ωs 3

√
a, s = 0, 1, 2, where ω = − 1

2 +
√

3
2 i.

If D1 = 0, then D2 �= 0. In this case, a0 �= 0. Otherwise assume a0 = 0, D2 =
−a1a2 �= 0 forces a1, a2 �= 0, and hence D1 = −a2

1 �= 0, which leads to a contradic-
tion. In this case, it is straightforward to show that

F(x, y) = a0(x + a1

a0
y)3 + (a3 − a3

1

a2
0

)y3.

Now we assume D1 �= 0. By computing the eigenvectors of �, we have(
0 −D3

D1 D2

)(−λ2 −λ1

D1 D1

)
=

(−λ2 −λ1

D1 D1

)(
λ1 0
0 λ2

)
. (9)

As in the proof of Proposition 2, take the change of variables(
x

y

)
=

(−λ2 −λ1

D1 D1

)(
u

v

)
, (10)
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then we have

F(x, y) = au3 + bv3

for some a, b ∈ C. One can determine a and b by comparing the coefficients of both
sides of the preceding equation. As a summary of the previous discussion, we have

Proposition 8. Let F(x, y) = a0x
3 + 3a1x

2y + 3a2xy2 + a3y
3 and suppose D2

2 −
4D1D3 �= 0.

(1) If D1 = 0, then a0 �= 0 and F(x, y) = a0(x + a1
a0

y)3 + (a3 − a3
1

a2
0
)y3.

(2) If D3 = 0, then a3 �= 0 and F(x, y) = (a0 − a3
2

a2
3
)x3 + a3(

a2
a3

x + y)3.

(3) If D1 �= 0, then

F(x, y) = λ2a0 − D1a1

λ2 − λ1
(x + λ1

D1
y)3 + λ1a0 − D1a1

λ1 − λ2
(x + λ2

D1
y)3, (11)

where λ1 and λ2 are the eigenvalues of the matrix � defined by (8).

Proof. Note that F(x, y) is nondegenerate since D2
2 − 4D1D3 �= 0. We are left to

prove (3). Continuing with (10), by direct computation we have(
u

v

)
= 1

(λ1 − λ2)D1

(
D1 λ1

−D1 −λ2

)(
x

y

)
.

Thus we may assume F(x, y) = α(x + λ1
D1

y)3 + β(x + λ2
D1

y)3 for some α and β. Then
equation (11) follows by comparing the coefficients.

The following are the corresponding results for cubic equations.

Theorem 9. Let f (x) = a0x
3 + 3a1x

2 + 3a2x + a3 be a cubic polynomial with D2
2 −

4D1D3 �= 0. Then f (x) has no multiple roots, and the roots are given as follows.

(1) If D1 = 0, then f (x) = a0(x + a1
a0

)3 + (a3 − a3
1

a2
0
), and the complex roots of f (x)

are

xs = −a1

a0
+ ωs

a0

3
√

a3
1 − a2

0a3, s = 0, 1, 2,

where ω = − 1
2 +

√
3

2 i.

(2) If D1 �= 0, then f (x) = λ2a0−D1a1
λ2−λ1

(x + λ1
D1

)3 + λ1a0−D1a1
λ1−λ2

(x + λ2
D1

)3, and the com-
plex roots of f (x) are

xs = γωsλ1 − λ2

D1(1 − γωs)
, s = 0, 1, 2, (12)

where γ = 3
√

λ2a0−D1a1
λ1a0−D1a1

and ω = − 1
2 +

√
3

2 i.

Proof. We only prove (2). By (6) and (11), f (x) can be completed to cubes as

f (x) = λ2a0 − D1a1

λ2 − λ1
(x + λ1

D1
)3 + λ1a0 − D1a1

λ1 − λ2
(x + λ2

D1
)3.
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It is clear that

f (x) = 0 ⇔ λ2a0 − D1a1

λ1 − λ2
(x + λ1

D1
)3 = λ1a0 − D1a1

λ1 − λ2
(x + λ2

D1
)3.

Then one readily obtains the claimed roots for the cubic equation.

Theorem 10. Let F(x, y) = a0x
3 + 3a1x

2y + 3a2xy2 + a3y
3 be a cubic form. Then

the following statements are equvialent.
(1) Z(F) ∼= C[ε]/(ε2) as algebras.
(2) F(x, y) is nondegenerate and D2

2 − 4D1D3 = 0.
(3) F(x, y) = (α1x + β1y)(α2x + β2y)2 with α1β2 − α2β1 �= 0. In this case,

(α1x + β1y, α2x + β2y) =
{

(3a2x + a3y, y) if D1 = 0;
(a0x + (3a1 − D2

D1
a0)y, x + D2

2D1
y) if D1 �= 0.

Consequently, let f (x) = a0x
3 + 3a1x

2 + 3a2x + a3 be a nondegenerate cubic
polynomial with D2

2 − 4D1D3 = 0. Then f (x) has a simple root and a root of multi-
picity 2 given by

x0 = D2

D1
− 3a1

a0
, x1 = x2 = − D2

2D1
.

Proof. The equivalence (1)⇔(2) follows from Proposition 6 and Theorem 7. We will
show (2)=⇒(3) and (3)=⇒(1).

(2)=⇒(3) Assume F is nondegenerate and D2
2 − 4D1D3 = 0. We make a discus-

sion on D1.
If D1 = 0, then D2 = 0. This implies that

(
a0
a1

) = 0. Otherwise,
(
a1
a2

)
and

(
a2
a3

)
would

both be multiples of
(
a0
a1

)
. This would give D3 = 0, contradicting the nondegeneracy

of F . Therefore F(x, y) = (3a2x + a3y)y2. Moreover, D3 = −a2
2 �= 0 implies that

a2 �= 0, and hence 3a2x + a3y and y are linearly independent.
Now assume D1 �= 0. Under the present condition, the matrix � has two equal

eigenvalues λ = λ1,2 = D2
2 , and the center Z(F) ∼= C[ε]/(ε2). It is clear that � −

λI2 ∈ Z(F) and (� − λI2)
2 = 0. By direct computation, we have(−λ −D3

D1 λ

)(−λ 1
D1 0

)
=

(−λ 1
D1 0

) (
0 1
0 0

)
.

Let P denote the invertible matrix

(−λ 1
D1 0

)
. Take a change of variables

(
x

y

)
=

P

(
u

v

)
and denote the resulting binary cubic by G(u, v). Note that Z(G) =

P −1Z(F)P. Therefore

(
0 1
0 0

)
∈ Z(G). Then by the condition of center algebras,

we can easily observe that ∂2G

∂u2 = 0. It follows that the monomials u3 and u2v do not
appear in G(u, v). Therefore

F(x, y) = G(u, v) = b2uv2 + b3v
3 = (b2u + b3v)v2
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for some b2, b3 ∈ C. Note that v = x + D2
2D1

y. By Vieta’s formula one shows that

F(x, y) = [a0x + (3a1 − D2

D1
a0)y](x + D2

2D1
y)2.

(3)=⇒(1) Consider G(u, v) = uv2. By an easy calculation,

Z(G) =
{(

a b

0 a

)
| a, b ∈ C

}

is clearly isomorphic to C[ε]/(ε2). Now Z(F) ∼= Z(G) for G is obtained from F by
taking the invertible linear change of variables u = α1x + β1y, v = α2x + β2y.

The last assertion follows easily from (3). Note that in this case, a0 is the leading
term of a cubic polynomial and hence nonzero, and D1 �= 0 as shown above.

Applying Theorems 9 and 10 to the cubic equation x3 + px + q = 0, we obtain the
well-known Cardano’s formula.

Corollary 11 (Cardano’s Formula). Let x3 + px + q = 0 be a cubic equation.

(1) If p3

27 + q2

4 �= 0, then the equation has 3 distinct roots

xs = ωs
3

√
−q

2
+

√
q2

4
+ p3

27
+ ω−s

3

√
−q

2
−

√
q2

4
+ p3

27
, s = 0, 1, 2,

where ω = − 1
2 +

√
3

2 i, and we require

3

√
−q

2
+

√
q2

4
+ p3

27
· 3

√
−q

2
−

√
q2

4
+ p3

27
= −p

3
.

(2) If p3

27 + q2

4 = 0 and p �= 0, then the equation has 2 distinct roots

x0 = 3q

p
, x1 = x2 = − 3q

2p
.

(3) If p = q = 0, then the equation has roots x0 = x1 = x2 = 0.

Proof. Since (3) is obvious, we only prove (1) and (2).
Set F(x, y) = x3 + pxy2 + qy3. By definition D1 = p

3 , D2 = q, D3 = −p2

9 ,
D2

2−4D1D3
4 = q2

4 + p3

27 , and λ1,2 = q

2 ±
√

q2

4 + p3

27 . Choose cubic roots 3
√

λ1 and 3
√

λ2

such that 3
√

λ1
3
√

λ2 = −p

3 . Set 3
√−λ1 = − 3

√
λ1 and 3

√−λ2 = − 3
√

λ2. Then we have
3
√−λ1

3
√−λ2 = −p

3 .

(1) First assume that p3

27 + q2

4 �= 0. Then D2
2 − 4D1D3 �= 0.

If p �= 0, then D1 �= 0, and by (12) we have

xs = 3

p
· λ

2
3
1 λ

1
3
2 ωs − λ2

1 − λ
− 1

3
1 λ

1
3
2 ωs

= 3

p
(λ1λ2)

1
3
λ

2
3
1 ωs − λ

2
3
2

λ
1
3
1 − λ

1
3
2 ωs
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= 3

p
(λ1λ2)

1
3 ωs λ

2
3
1 − λ

2
3
2 ω2s

λ
1
3
1 − λ

1
3
2 ωs

= −(λ1)
1
3 ωs − (λ2)

1
3 ω−s

= ωs
3

√
−q

2
+

√
q2

4
+ p3

27
+ ω−s

3

√
−q

2
−

√
q2

4
+ p3

27
.

If p = 0, then D1 = 0. Then the equation has roots xs = ωs 3
√−q, s = 0, 1, 2,

which is the same as the stated formula.
(2) Now assume that p3

27 + q2

4 = 0 and p �= 0. Then D2
2 − 4D1D3 = 0 and F(x, y)

is nondegenerate. In fact, by Proposition 6, F(x, y) is degenerate if and only (1, 0,
p

3 )

and (0,
p

3 , q) are linearly dependent, if and only if p = q = 0.
By Theorem 10 the equation has two distinct roots as given by

x0 = 3q

p
, x1 = x2 = − 3q

2p
.

Remark 12. We have shown that the Cardano formula can be derived from our ap-
proach of completing the cube. Moreover, the terms appearing in the Cardano formula
now have some interesting meaning: they are the eigenvalues of a generating matrix of
the center algebra of its associated binary cubic.

4. SOLVING SOME ALGEBRAIC EQUATIONS BY COMPLETING POW-
ERS. The crux of solving cubic equations by completing the cube is that the center
algebra of a general binary cubic is nontrivial, namely it contains matrices other than
scalar matrices. This approach is easily extended to equations of higher degrees with
nontrivial center. In particular, the key structure information of center algebras enables
us to complete powers and therefore helps to find radical solutions to some algebraic
equations.

For convenience, write a complex univariate polynomial of degree d > 3 as

f (x) = a0x
d +

(
d

1

)
a1x

d−1 + · · · +
(

d

d − 1

)
ad−1x + ad. (13)

We also consider its homogenization

F(x, y) = a0x
d +

(
d

1

)
a1x

d−1y + · · · +
(

d

d − 1

)
ad−1xyd−1 + ady

d. (14)

First of all, we compute the center of F(x, y). Suppose X = (cij )2×2 ∈ Z(F). Then
the condition on Z(F) leads to the equation

Fxxc12 + Fxy(c22 − c11) − Fyyc21 = 0.

Since

Fxx =
d−2∑
i=0

d(d − 1)

(
d − 2

i

)
aix

d−2−iyi,

Fxy =
d−2∑
i=0

d(d − 1)

(
d − 2

i

)
ai+1x

d−2−iyi,
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Fyy =
d−2∑
i=0

d(d − 1)

(
d − 2

i

)
ai+2x

d−2−iyi,

this leads to the following system of linear equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0c12 + a1(c22 − c11) − a2c21 = 0
a1c12 + a2(c22 − c11) − a3c21 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ad−2c12 + ad−1(c22 − c11) − adc21 = 0.

(15)

Since the ai are arbitrary, the rank of the coefficient matrix of the previous system
of linear equations is in general 3. Thus for a general binary form F of degree > 3,
we have c12 = c21 = 0 and c11 = c22, which leads to the conclusion that Z(F) ∼= C.
This is a drastic difference in contrast to the case of d = 3 where the centers are
automatically nontrivial as the coefficient matrix has rank at most 2. However, if Z(F)

is nontrivial, then F can be completely determined by its center structure. Accordingly,
the associated algebraic equation f (x) = 0 can be solved. In the following, we switch
freely between f and F as necessary.

Theorem 13. Let f (x) and F(x, y) be as (13) and (14).

(1) f (x) = (αx + β)d if and only if rank
( a0 a1 ··· ad−1

a1 a2 ··· ad

) = 1.

(2) f (x) = (αx + β)d + γ if and only if (a1, a2, . . . , ad−1) is a multiple of (a0, a1,

. . . , ad−2).

(3) f (x) = γ xd + (αx + β)d if and only if (a1, a2, . . . , ad−1) is a multiple of
(a2, a3, . . . , ad).

(4) f (x) = (α1x + β1)
d + (α2x + β2)

d with α1β2 − α2β1 �= 0 if and only if Z(F) ∼=
C×C.

(5) f (x) = (α1x + β1)(α2x + β2)
d−1 with α1β2 − α2β1 �= 0 if and only if Z(F) ∼=

C[ε]/(ε2).

Proof. The proofs for the corresponding results of cubics can be applied verbatim
here. To remind the reader, we also include a proof for (5) here.

For the “if” part, we simply take the change of variables u = α1x + β1y and v =
α2x + β2, and consider G(u, v) = uvd−1. An easy calculation shows that Z(G) ={(

a b

0 a

)
| a, b ∈ C

}
, and hence Z(F) ∼= Z(G) ∼= C[ε]/(ε2).

For the “only if” part, we note that any nonzero nilpotent matrix A ∈ C2×2 is similar

to

(
0 1
0 0

)
. Thus

(
0 1
0 0

)
∈ P −1Z(F)P for some invertible matrix P . Take the change

of variables

(
x

y

)
= P

(
u

v

)
. Then

(
0 1
0 0

)
∈ Z(G) = P −1Z(F)P , where G(u, v) is

the resulting binary form under the change of variables.
Assume G(u, v) = b0u

d + (
d

1

)
b1u

d−1v + · · · + (
d

d−1

)
bd−1uvd−1 + bdv

d . Consider

the linear system (15) for G. Then

(
0 1
0 0

)
∈ Z(G) forces b0 = b1 = · · · = bd−2 =

0, that is G(u, v) = dbd−1uvd−1 + bdv
d = (dbd−1u + bdv)vd−1, and the conclusion

follows.
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Finally, we derive a radical formula for an algebraic equation with nontrivial center.
Keep the following notations of Section 3:

D1 =
∣∣∣∣a0 a1

a1 a2

∣∣∣∣ , D2 =
∣∣∣∣a0 a2

a1 a3

∣∣∣∣ , D3 =
∣∣∣∣a1 a2

a2 a3

∣∣∣∣ , λ1,2 = D2 ± √
D2

2 − 4D1D3

2
.

Let � denote the following Hankel matrix

⎛
⎜⎜⎝

a0 a1 a2

a1 a2 a3
...

...
...

ad−2 ad−1 ad

⎞
⎟⎟⎠ .

As the case of rank � = 1 is easy and treated in item (1) of the previous theorem, in
the rest we focus on the case of rank � = 2.

Theorem 14. Suppose f (x) = a0x
d + (

d

1

)
a1x

d−1 + · · · + (
d

d−1

)
ad−1x + ad and

a0 �= 0.

(1) Assume rank � = 2, D1 �= 0, and D2
2 �= 4D1D3. Then the roots of f (x) are

xs = δζ sλ1 − λ2

D1(1 − δζ s)
, s = 0, 1, . . . , d − 1

where δ = d

√
λ2a0−D1a1
λ1a0−D1a1

, ζ = cos 2π

d
+ i sin 2π

d
.

(2) Assume rank � = 2, D1 �= 0, and D2
2 = 4D1D3. Then the roots of f (x) are

x0 = (d − 1)D2

2D1
− da1

a0
, x1 = · · · = xd−1 = − D2

2D1
.

Proof. By the assumptions rank � = 2 and D1 �= 0, the system of linear equations
(15) is determined by the first two rows. Then the center algebra Z(F) is generated by

� =
(

0 −D3

D1 D2

)
.

The eigenvalues of � are λ1,2 = D2±
√

D2
2−4D1D3

2 .

(1) If D2
2 �= 4D1D3, then λ1 �= λ2 and so Z(F) ∼= C×C. Similar to the proofs of

Proposition 8 and Theorem 9, we have

f (x) = λ2a0 − D1a1

λ2 − λ1
(x + λ1

D1
)d + λ1a0 − D1a1

λ1 − λ2
(x + λ2

D1
)d .

It is clear that

f (x) = 0 ⇔ λ2a0 − D1a1

λ1 − λ2
(x + λ1

D1
)d = λ1a0 − D1a1

λ1 − λ2
(x + λ2

D1
)d .

Obviously, f (x) = 0 has the claimed roots.
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(2) If D2
2 = 4D1D3, then λ1 = λ2 = D2

2 and thus Z(F) ∼= C[ε]/(ε2).Then similar to
the proof of Theorem 10, x = − λ1

D1
= − D2

2D1
is a root of multiplicity d − 1. The

other root is obtained by Vieta’s formula.

Remark 15. The condition D1 �= 0 implies that the first two columns of � are linearly
independent. One may derive similar radical formulas when the second column and
the third column are linearly independent, or the first column and the third column are
linearly independent. We leave the detail to the interested reader.

Example 16. Consider the quintic equation 31x5 + 235x4 + 710x3 + 1070x2 +
805x + 242 = 0. Then D1 = −8, D2 = −20, D3 = −12, λ1 = −8, λ2 = −12, δ =
1
2 . So it fits item (1) of the previous theorem and the solutions are x0 = −2 and

xn = 3−e
2πi
n

e
2πi
n −2

for 1 ≤ n ≤ 4.

Example 17. Consider the degree 7 equation

x7 − 8

3
x6 + 11

4
x5 − 5

4
x4 + 5

48
x3 + 1

8
x2 − 3

64
x + 1

192
= 0.

Then D1 = − 25
1764 , D2 = 25

1764 , D3 = − 25
7056 , λ1 = λ2 = 25

3528 . So the equation fits item
(2) of the previous theorem and the solutions are x0 = − 1

3 , x1 = · · · = x6 = 1
2 .

5. SUMMARY. In this article, we apply nontrivial center algebraic structure to pro-
vide radical solutions to some higher degree algebraic equations. In the case of cubic
equations, we show that each cubic has a nontrivial center and this enables us to com-
plete the cube, or factorize the equation. For algebraic equations of degree greater than
3, we provide very simple and elementary criteria and algorithms to complete powers
and obtain radical solutions. The present method only works for very special equa-
tions, even for quartic equations. However, if we consider the completion of powers
in a broader sense, then we may be able to solve more equations. In the following we
take quartic equations as examples to elucidate our idea.

Let f (x) = a0x
4 + 4a1x

3 + 6a2x
2 + 4a3x + a4 be a quartic. Then by a suitable

change of variable, the quartic can be reduced to g(y) = y4 + py2 + qy + r. Instead
of completing g(y) as the sum of two biquadrates, we are content with writing g(y) as
a sum of two squares. Of course, this is already enough to solve the quartic equation
g(y) = 0. We carry out the idea by the method of undetermined coefficients. Suppose

y4 + py2 + qy + r = (y4 + 2αy2 + α2) + [(p − 2α)y2 + qy + r − α2]

and choose α such that the latter quadratic term is a perfect square. This is equivalent
to

q2 − 4(p − 2α)(r − α2) = 0.

This is a cubic equation in α and clearly such an α is available. Now suppose

y4 + py2 + qy + r = (y2 + α)2 + (βy + γ )2,

then y4 + py2 + qy + r = 0 is easily solved by simply taking the square roots of
(y2 + α)2 = −(βy + γ )2. Therefore quartic equations can be solved by a generalized
completion of powers. It is of interest whether there is a notion of generalized cen-
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ters for higher degree forms which governs such a generalization of completing the
powers.

Note also that if the binary form F(x, y) has center Z(F) ∼= C×C, then the split-
ting field of its dehomogenization f (x) is usually a Kummer extension [10] over a
suitable ground field. It is also of interest whether all Kummer extensions appear in
this way.
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An Arithmetic-Geometric Proof of the Arithmetic-Geometric
Inequality

Area(OGY) > Area(OGP) = 1

2

(
1 −

√
xy

y

) √
xy = 1

2
(
√

xy − x) · 1 = Area(OXG).

Therefore |GY | > |XG|, hence y − √
xy >

√
xy − x or x+y

2 >
√

xy.
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